Banner de la página interior
Búsqueda
Hogar

Búsqueda

  • Selección de acero Selección de acero
    Sep 28, 2022
    Tendremos en cuenta los siguientes dos factores al seleccionar el acero, uno es la maquinabilidad del acero, el otro es el carácter vervicio durante el procesamiento, esperamos que el acero tenga una baja resistencia y un alto alargamiento, lo que lo hace fácil de cortar. , sello o formulario. Pero en el servicio de acero, esperamos que tenga alta resistencia, buen rendimiento de impacto para sufrir condiciones de servicio extremas. Por estas dos razones, debemos seleccionar el acero adecuado por sus propiedades mecánicas. Las principales propiedades mecánicas incluyen Límite elástico El límite elástico o límite elástico de un material se define en ingeniería y ciencias de las materias como la tensión a la que un material comienza a deformarse plásticamente. Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se pasa el límite elástico, una fracción de la deformación será permanente y no reversible. Resistencia a la tracción La resistencia a la tracción está indicada por la tensión máxima antes de la rotura de la muestra. En general, indica cuándo ocurrirá el cuello. Alargamiento El alargamiento, o porcentaje de alargamiento a la rotura, se define como el cambio en la longitud calibrada después de la rotura por unidad de la longitud calibrada original. Un alto alargamiento significa que el material puede soportar una gran deformación permanente antes de la rotura, o una alta deformabilidad. El límite elástico del parámetro, la resistencia a la tracción, el alargamiento se miden mediante la prueba de tracción. Energía de impacto La energía de impacto, o tenacidad, está determinada por la energía absorbida por la muestra durante la fractura en la prueba de impacto. Se mide en unidades de julios. La energía de impacto indica la resistencia del material a la carga de impacto. Se prueba mediante la prueba Charpy V-notch. Si se requiere soldadura durante el proceso, debemos considerar el rendimiento de soldadura del acero. Soldadura Para el acero, la soldadura es una fabricación para combinar diferentes piezas de acero. En la soldadura, normalmente los sitios de unión se funden y se enfrían para formar una unión fuerte, como la soldadura por arco eléctrico, la soldadura con gas y la soldadura por resistencia eléctrica. soldabilidad La soldabilidad, también conocida como capacidad de unión, de un material se refiere a su capacidad para ser soldado. La mayoría de los aceros se pueden soldar, pero algunos son más fáciles de soldar que otros. Influye en gran medida en la calidad de la soldadura y es un factor importante a la hora de elegir qué proceso de soldadura utilizar.    
    LEE MAS
  • What is the use of laminated core?
    Jun 09, 2025
    Laminated cores play a crucial role in electrical equipment. They are made by stacking thin silicon steel sheets or ferroalloy sheets and insulating them from each other. Its main purpose is to reduce eddy current losses and improve equipment efficiency. Take a transformer as an example. When alternating magnetic flux passes through the core, an induced electromotive force is generated. If the core is solid, a large eddy current will be formed, resulting in energy loss and core heating. The laminated core divides the core into thin sheets, confining the eddy current within a narrow circuit. The net electromotive force of the circuit is small, and the resistivity of the thin sheet material is high, effectively reducing the eddy current loss. In addition, laminated iron cores can also improve the magnetic field distribution, enhance the electromagnetic performance of the equipment, increase operational stability, and extend the service life of the equipment. In an electric motor, laminated cores are equally important. It helps to reduce energy loss, improve motor efficiency, and enable the motor to convert electrical energy into mechanical energy more efficiently during operation. At the same time, it can also reduce the noise and vibration during the operation of the motor and improve the overall performance of the equipment. In an electric motor, laminated cores are equally important. It helps to reduce energy loss, improve motor efficiency, and enable the motor to convert electrical energy into mechanical energy more efficiently during operation. At the same time, it can also reduce the noise and vibration during the operation of the motor and improve the overall performance of the equipment.
    LEE MAS
  • Tres avances tecnológicos en el auge de la industria del acero al silicio en China
    Mar 17, 2025
    Como un tipo importante de acero eléctricoEl acero al silicio desempeña un papel fundamental en la industria energética. En los últimos años, China... acero al silicio La industria ha logrado un progreso notable y se ha consolidado como líder en el mercado global. Este artículo presenta tres avances tecnológicos en el auge de la industria del acero al silicio en China, mostrando las destacadas contribuciones de los fabricantes y productores chinos de acero eléctrico a la innovación tecnológica.Primer avance tecnológico: desarrollo y producción de Acero al silicio de alta inducción magnéticaLos fabricantes chinos de acero eléctrico participan activamente en la investigación, el desarrollo y la producción de acero al silicio de alta inducción magnética para satisfacer la creciente demanda. Este acero presenta una mayor resistencia a la inducción magnética y menores pérdidas de hierro, lo que reduce eficazmente las pérdidas de energía en los equipos eléctricos. Mediante la adopción de técnicas de producción avanzadas y un diseño de aleación preciso, Fabricantes chinos de acero eléctrico Han logrado resultados innovadores, elevando las propiedades magnéticas del acero al silicio a nuevas alturas.Segundo avance tecnológico: promoción y aplicación del acero al silicio amorfoEl acero al silicio amorfo, un novedoso material de acero al silicio, presenta pérdidas por histéresis y pérdidas de hierro extremadamente bajas, lo que ofrece una mayor eficiencia operativa y un menor consumo de energía. Los fabricantes chinos de acero eléctrico promueven su aplicación mediante la introducción de líneas de producción y procesos de fabricación avanzados, mejorando eficazmente la calidad y el rendimiento del acero al silicio. El acero al silicio amorfo se ha empleado ampliamente en equipos eléctricos como... transformadores, haciendo contribuciones significativas al funcionamiento eficiente de la industria energética de China.Tercer avance tecnológico: procesos de fabricación innovadores para Acero al silicio de calibre finoEl acero al silicio de calibre fino tiene un inmenso potencial para aplicaciones en la industria energética, pero su proceso de fabricación es relativamente complejo e impone altos requisitos en cuanto a tecnología y equipos de producción. Los fabricantes chinos de acero al silicio han desarrollado con éxito tecnologías de fabricación eficientes para este material mediante la innovación continua y la mejora de procesos. Estas innovaciones tecnológicas no solo mejoran la eficiencia y la calidad de la producción del acero al silicio de calibre fino, sino que también reducen los costos de producción, ofreciendo a los usuarios opciones de productos más competitivas.Gracias al continuo desarrollo e innovación de la industria china del acero al silicio, los fabricantes y productores de acero eléctrico han logrado importantes avances tecnológicos. La promoción y aplicación del acero al silicio de alta inducción magnética, el acero al silicio amorfo y el acero al silicio de calibre fino han impulsado considerablemente el desarrollo de la industria eléctrica y la mejora de la eficiencia energética. La industria china del acero al silicio seguirá impulsando la innovación y el desarrollo tecnológico, contribuyendo aún más a la prosperidad del mercado mundial del acero eléctrico.
    LEE MAS
  • Comprensión de los diferentes grados de acero al silicio orientado para núcleos de transformadores Comprensión de los diferentes grados de acero al silicio orientado para núcleos de transformadores
    Jan 15, 2025
    Acero al silicio orientado, también conocido como eléctrico o CRGO (Laminado en frío de grano orientado), es un material vital utilizado en la fabricación de núcleos de transformador. Sus propiedades magnéticas únicas y su orientación de grano lo convierten en un material excelente para una transmisión de energía eficiente. En este artículo, exploraremos los distintos grados de acero al silicio orientado y sus aplicaciones en la industria de transformadores, incluida la adición del grado M4. Estamos orgullosos de informarles que SHUNGE posee una amplia gama de grados de acero al silicio orientado; por favor contáctenos para cualquier requisito específico.1. Grado M0:El acero al silicio orientado de grado M0 es muy apreciado por sus excepcionales características magnéticas. Con sus bajas pérdidas en el núcleo y su alta permeabilidad magnética, es ideal para su uso en transformadores de potencia de alta eficiencia. La eficiencia energética superior y la regulación de voltaje mejorada proporcionada por el grado M0 contribuyen a un rendimiento mejorado en diversas aplicaciones, que van desde la distribución de energía industrial hasta los sistemas de energía renovable.2. Grado M1:El acero al silicio orientado de grado M1 exhibe excelentes propiedades magnéticas y encuentra un uso común en transformadores de potencia media a alta. Ofrece pérdidas en el núcleo ligeramente mayores en comparación con el grado M0, pero sigue siendo una opción altamente confiable y eficiente. Los transformadores que utilizan acero al silicio de grado M1 sirven para diversos sistemas eléctricos, incluidas subestaciones de servicios públicos, edificios comerciales e instalaciones de fabricación.3. Grado M2:El acero al silicio orientado de grado M2 está diseñado específicamente para aplicaciones que requieren una menor densidad de flujo magnético. Aunque tiene mayores pérdidas en el núcleo en comparación con los grados M0 y M1, sigue siendo adecuado para transformadores donde la eficiencia no es la principal preocupación. El acero al silicio de grado M2 se usa comúnmente en transformadores de baja potencia, como los que se encuentran en electrodomésticos y sistemas de iluminación.4. Grado M4:El acero al silicio orientado de grado M4 es un grado especializado que ofrece propiedades magnéticas distintas y es adecuado para aplicaciones de transformadores específicas. Si bien proporciona beneficios únicos, como menores pérdidas en el núcleo a frecuencias más altas, está dirigido a transformadores que operan en entornos exigentes. El acero al silicio de grado M4 se usa ampliamente en electrónica de potencia, sistemas de energía renovable y transformadores de alta frecuencia.Acero al silicio orientado, con su orientación de grano y propiedades magnéticas superiores, juega un papel crucial para garantizar la eficiencia y confiabilidad de los núcleos de los transformadores. Al comprender los diferentes grados disponibles, los fabricantes pueden seleccionar el material más adecuado para sus necesidades específicas de transmisión de potencia. Ya sean los grados M0 y M1 ampliamente utilizados, el grado M2 especializado o el grado M4 avanzado, cada uno ofrece beneficios y aplicaciones únicos, lo que contribuye al funcionamiento perfecto de los sistemas eléctricos en todo el mundo. En ShunGe, estamos orgullosos de ofrecer una amplia gama de grados de acero al silicio orientado, incluidos casi todos los grados disponibles. Por favor siéntete libre de contáctanos para cualquier requerimiento o consulta específica.
    LEE MAS
  • Acero al silicio CRGO para una transmisión de energía eficiente Acero al silicio CRGO para una transmisión de energía eficiente
    Dec 18, 2024
    El núcleo del transformador juega un papel crucial en la transmisión eficiente y confiable de energía eléctrica. Como componente clave, proporciona una ruta de baja reluctancia para que el flujo magnético generado por el devanado primario se transfiera al devanado secundario. Entre los diversos materiales utilizados para los núcleos de los transformadores, acero al silicio orientado, también conocido como acero al silicio CRGO (Cold-Rolled Grain-Oriented) o acero eléctrico, destaca por sus excepcionales propiedades magnéticas y su amplia aplicación en diferentes potencias de transformadores.Acero al silicio CRGO: un material de núcleo superior:Acero al silicio CRGO está diseñado específicamente para exhibir la orientación del grano, lo que le permite maximizar sus propiedades magnéticas cuando se somete a un campo magnético alterno. El proceso de fabricación implica una técnica controlada de laminación en frío que alinea los granos de cristal dentro del acero en una dirección específica. Esta orientación del grano reduce la aparición de dominios magnéticos y minimiza las pérdidas por histéresis y las pérdidas por corrientes parásitas, lo que convierte al acero al silicio CRGO en la opción preferida para núcleos del transformador.Aplicaciones en diferentes potencias nominales:Transformadores de baja potencia:En transformadores de baja potencia, como los que se utilizan en aplicaciones residenciales y comerciales de pequeña escala, se utiliza acero al silicio CRGO para mejorar la eficiencia energética. Las bajas pérdidas en el núcleo del material y su alta permeabilidad magnética contribuyen a reducir el desperdicio de energía y mejorar la regulación del voltaje, lo que garantiza un rendimiento óptimo en electrodomésticos, sistemas de iluminación y dispositivos electrónicos.Transformadores de Media Potencia:Los transformadores de potencia media, comúnmente empleados en entornos industriales y redes de distribución de energía, requieren materiales centrales confiables y eficientes. El acero al silicio CRGO ofrece excelentes propiedades magnéticas a potencias nominales intermedias, lo que permite una mejor transmisión de energía y pérdidas de energía mínimas. Estos transformadores encuentran aplicación en áreas como instalaciones de fabricación, edificios comerciales y subestaciones de servicios públicos.Transformadores de alta potencia:Para transformadores de alta potencia, como los utilizados en sistemas de transmisión y generación de energía a gran escala, el acero al silicio CRGO proporciona un rendimiento superior. Con su avanzada orientación de grano y características magnéticas optimizadas, minimiza las pérdidas en el núcleo y mejora la eficiencia, asegurando una transmisión de energía confiable a largas distancias. Estos transformadores de alta potencia son componentes cruciales de las redes eléctricas y permiten la distribución eficiente de electricidad a ciudades, industrias y proyectos de infraestructura.  La selección del material del núcleo juega un papel vital en el rendimiento y la eficiencia de los transformadores. El acero al silicio CRGO, también conocido como acero al silicio orientado o acero eléctrico, se destaca como una opción ideal para núcleos de transformadores de diferentes potencias nominales. Su orientación de grano única y sus propiedades magnéticas reducen significativamente las pérdidas de energía, asegurando una transmisión de potencia óptima. Ya sea en transformadores de baja, media o alta potencia, el acero al silicio CRGO demuestra su superioridad para mejorar la eficiencia y confiabilidad en la transmisión y distribución de energía eléctrica.
    LEE MAS
  • Exploración del acero al silicio de grano orientado: un análisis en profundidad de sus características y aplicaciones versátiles
    Dec 12, 2024
    Acero al silicio orientado, comúnmente conocido como CRGO (orientado a grano laminado en frío), es un material de acero al silicio altamente especializado que ocupa una posición primordial en la fabricación de equipos eléctricos y transformadores. Este material, que se distingue por sus propiedades magnéticas únicas, sirve como piedra angular en los sectores de la industria energética y de fabricación eléctrica.El acero al silicio CRGO está compuesto principalmente de silicio y hierro, con un contenido de silicio que suele oscilar entre el 1,5% y el 4,5%. A través de un riguroso proceso de laminado en frío, los dominios magnéticos dentro CRGO están meticulosamente alineados, lo que da como resultado una conductividad magnética excepcional en direcciones específicas. Esta alineación es crucial ya que permite a CRGO reducir drásticamente las pérdidas de hierro y mejorar significativamente la eficiencia de transformadores, reactores y otros dispositivos eléctricos.La versatilidad del acero al silicio CRGO abarca una amplia gama de aplicaciones. Desde transformadores de energía a gran escala que forman la columna vertebral de las redes nacionales hasta transformadores Integrado en pequeños electrodomésticos, CRGO contribuye significativamente al funcionamiento estable y a la capacidad de ahorro de energía de los sistemas eléctricos. Además, sus aplicaciones se extienden a equipos de transmisión de alto voltaje, sistemas de suministro de energía para el tránsito ferroviario urbano y sectores de energía renovable como la generación de energía eólica y solar.Las características únicas del acero al silicio CRGO, que incluyen una baja pérdida del núcleo y una alta permeabilidad, lo hacen indispensable en la industria energética. A medida que se intensifica el enfoque global en la conservación de energía y la reducción de emisiones, la demanda de Acero al silicio CRGO sigue creciendo. Sus amplias aplicaciones no sólo mejoran la eficiencia energética y la estabilidad de los equipos eléctricos, sino que también contribuyen a un futuro más sostenible.En resumen, el acero al silicio CRGO es un material con propiedades magnéticas excepcionales que desempeña un papel vital en la industria eléctrica. Sus diversas aplicaciones y sus importantes contribuciones a la eficiencia energética y la sostenibilidad lo convierten en una piedra angular en la evolución continua de los sistemas energéticos en todo el mundo.
    LEE MAS
  • ¿El acero de silicio barato realmente te ahorra dinero? 3 errores costosos para evitar
    Feb 15, 2025
    Al abastecer acero de silicio, el precio inicial a menudo se convierte en el factor decisivo. Pero aquí está la verdad dura: lo que ahorras de arriba podría costarte 3-5x más en pérdidas ocultas. Después de auditar 37 proyectos fallidos (de Burnt transformadores Para las órdenes OEM rechazadas), hemos identificado 3 errores mortales que cometen los compradores con acero de silicio "barato".Error #1: Ignorar la pérdida de núcleo: el asesino de ganancias silenciosasLa trampaUn fabricante de motores vietnamita cambió a "Grado 50WW600" de un proveedor no certificado a un costo 12% más bajo. Seis meses después:9% de consumo de energía más alto en motores22 quejas de los clientes sobre sobrecalentamiento$ 280,000 en reclamos de garantíaPor qué pasaLa pérdida de núcleo (pérdida de hierro) afecta directamente la eficiencia. El acero de silicio barato a menudo usa:Tecnología orientada a grano deficienteProcesos de recocido inconsistentesTolerancia de espesor más allá de ± 0.02 mmArreglo inteligenteSiempre demanda:✅ Informes de prueba de Epstein (no solo certificados de fábrica)✅ Valores de pérdida de núcleo garantizados (por ejemplo, P1.5/50 ≤ 4.0 w/kg)✅ Espesor medido por indicadores láser, no herramientas manualesError #2: Confía ciegamente en "Grados equivalentes"La trampaUn comprador turco compró "equivalente chino de M250-50A5" para reemplazar el acero de la UE. Resultado:La densidad de flujo magnético cayó de 1.78t a 1.62tLas pruebas de cumplimiento de EMC fallidas en los motoresMultas de retraso del proyecto: € 150,000El secreto sucioLos "equivalentes" a menudo difieren en:Contenido de silicio (2.9% frente a 3.2% cambia drásticamente la permeabilidad)Recubrimiento de aislamiento (capacidad de anticorrosión C3 vs C5)Factor de laminación (eficiencia de apilamiento)Guía de supervivenciaVerificación cruzada contra ASTM A876 o estándares JIS C 2553Requerir pruebas de comparación de laboratorio de terceros (proporcionamos análisis de muestra gratuito)Solicite imágenes SEM de recubrimiento (ejemplo real a continuación):! [Comparación de recubrimiento de aislamiento: Flaky vs Uniforme]Error #3: Conante pasando los riesgos de la cadena de suministroLa trampaUn importador indio compró "barato" Crgo acero a través de una empresa comercial. Desastre golpeado:El 80% de las bobinas tenían grietas en el borde (oculto bajo el empaque)El proveedor desapareció después del pago parcialPérdida total: $ 410,000Banderas rojas de proveedores arriesgados🚩 Videos de visita de fábrica (solo fotos de stock)🚩 Negarse a firmar PI con cláusulas de penalización para defectos🚩 No se puede proporcionar un seguimiento de producción en tiempo realProtegerse✔️ Verifique la certificación IATF 16949 (crítico para compradores automotrices)✔️ Demanda de MTC específicos de lotes con números de calor rastreables✔️ Use servicios de depósito en garantía como Alibaba Trade AssuranceLa forma correcta de ahorrar costosEn [Foshan Shunge Steel Trading Co., Ltd.], ayudamos a los clientes a lograr ahorros reales a través de:Abastecimiento de precisiónHaga coincidir las necesidades de grado exacto (Hi-B, CGO o ONG)0,18 mm a 0,50 mm Slitting personalizadoStock previamente probadoBobinas compatibles con ASTM/JISLaminaciones precortadas con bordes sin rebabasLogística de sorpresa ceroEmbalaje VCI anti-Rust + Seguimiento de envío 24/7FinalEl acero de silicio barato es como un paracaídas de descuento: funciona hasta que más lo necesite. Discutamos cómo optimizar sus costos de material sin apostar en calidad.
    LEE MAS
  • Acero al silicio: el héroe anónimo de la eficiencia energética Acero al silicio: el héroe anónimo de la eficiencia energética
    Nov 28, 2024
    In the realm of electrical engineering, silicon steel stands as a quiet but powerful innovator, driving advancements in energy efficiency. This unique alloy, which combines iron with a significant percentage of silicon, possesses magnetic properties that are tailored for optimal electrical performance. By minimizing hysteresis and eddy current losses, silicon steel helps reduce energy waste, making it a cornerstone for the development of high-efficiency transformers and other critical electrical components.   At the forefront of this technological evolution is CRGO (Cold Rolled Grain Oriented) steel. Through a meticulous process of rolling, annealing, and laser scribing, the grains within CRGO steel are precisely aligned to match the direction of the magnetic field. This alignment minimizes losses and maximizes efficiency, making CRGO the gold standard for transformers used in power grids and renewable energy systems. Building on the success of CRGO, oriented silicon steel further refines the grain orientation process. By optimizing the silicon content and grain alignment, oriented silicon steel achieves even higher magnetic induction and lower losses, especially under high magnetic fields. This makes it an indispensable material for high-voltage transformers and large-scale power inverters, where precision and efficiency are paramount.   In summary, silicon steel, and its advanced forms CRGO and oriented silicon steel, are not just materials; they are the unsung heroes of energy efficiency. Their unique properties and processing techniques make them essential for the development of high-performance transformers and other electrical components, paving the way for a cleaner, more sustainable energy future.
    LEE MAS
  • Revelando la maravilla magnética: el fascinante mundo del acero al silicio de orientación Revelando la maravilla magnética: el fascinante mundo del acero al silicio de orientación
    Nov 05, 2024
    En el ámbito de la ciencia de materiales existe una estrella que brilla intensamente en el campo de la ingeniería eléctrica: orientación acero al silicio, o simplemente, acero al silicio orientado. Este no es un metal cualquiera; Es una maravilla tecnológica que revoluciona la forma en que pensamos sobre la electricidad y el magnetismo. Imagine un material tan refinado y diseñado que exhiba propiedades magnéticas excepcionales, lo que lo convierte en la opción ideal para transformadores y otros dispositivos eléctricos. Acero eléctrico orientado se somete a un complejo proceso de fabricación que implica laminado y recocido para alinear sus dominios magnéticos en una dirección específica. Esta alineación es crucial, ya que reduce significativamente la pérdida de energía durante la transformación de la energía eléctrica, mejorando la eficiencia a pasos agigantados. Pero ¿por qué debería importarnos? Bueno, en el mundo actual donde la sostenibilidad y la eficiencia energética son primordiales, cada pequeña cantidad de energía ahorrada cuenta. Los transformadores equipados con acero al silicio de orientación desempeñan un papel fundamental en la reducción del desperdicio de electricidad, contribuyendo así a redes eléctricas más ecológicas y respetuosas con el medio ambiente. Además, el fino calibre y la alta permeabilidad del material permiten diseños de transformadores más compactos, lo que lo convierte en un activo invaluable en el cada vez más reducido mundo de la electrónica. Desde centrales eléctricas a gran escala hasta pequeños transformadores dentro de nuestros dispositivos, el acero al silicio de orientación está ahí, haciendo su magia silenciosamente. Entonces, la próxima vez que te maravilles del flujo continuo de electricidad que impulsa tu vida, recuerda al héroe anónimo detrás de escena: el acero de silicio de orientación. Es un material que no se trata sólo de acero; se trata de innovación, eficiencia y un futuro más brillante y sostenible.
    LEE MAS
  • Núcleos de transformadores: mejora de la eficiencia y el rendimiento con acero al silicio Núcleos de transformadores: mejora de la eficiencia y el rendimiento con acero al silicio
    Jun 06, 2024
    Núcleos de transformadores juegan un papel crucial en el funcionamiento eficiente de los transformadores. Estos núcleos suelen estar hechos de un material llamado acero al silicio, que posee excelentes propiedades magnéticas. En este artículo, exploraremos la importancia de los núcleos de los transformadores, destacaremos diferentes tipos de núcleos y discutiremos sus escenarios de aplicación.1. Importancia de los núcleos de los transformadores:Los núcleos de los transformadores sirven como circuito magnético que facilita la transferencia de energía entre los devanados primario y secundario de un transformador. Su función principal es proporcionar una ruta de baja reluctancia para el flujo magnético generado por la corriente alterna, lo que resulta en una conversión de energía eficiente. Al utilizar acero al silicio de alta calidad, los núcleos de los transformadores minimizan las pérdidas de energía y mejoran el rendimiento general.2. Acero al Silicio y sus Beneficios:Acero al silicioEl acero eléctrico, también conocido como acero eléctrico o acero laminado, es el material preferido para los núcleos de los transformadores debido a sus propiedades magnéticas. Contiene silicio en composiciones específicas para reducir las pérdidas magnéticas provocadas por corrientes parásitas e histéresis. El acero al silicio ofrece bajas pérdidas en el núcleo, alta permeabilidad y excelente inducción de saturación, lo que lo convierte en una opción ideal para núcleos de transformadores.3. Tipos de núcleos de transformadores:Núcleo electrónico:El núcleo en forma de E es uno de los núcleos de transformadores más utilizados. Ofrece una alta utilización del espacio de devanado y permite que los devanados primario y secundario compartan una estructura común. El diseño del núcleo E proporciona una distribución de flujo eficiente y minimiza los campos magnéticos parásitos, lo que resulta en un rendimiento mejorado y una reducción de las pérdidas.Núcleo C:El núcleo C es otro diseño popular para núcleos de transformadores. Se fabrica enrollando tiras de acero al silicio en una forma de núcleo cerrado. Los núcleos C ofrecen una estructura compacta y ligera, lo que garantiza una alta eficiencia energética. Con espacios de aire cuidadosamente diseñados y configuraciones óptimas de devanado, los núcleos C exhiben bajas pérdidas y un excelente rendimiento magnético.4. Escenarios de aplicación:Transformadores de distribución de energía:Tanto los diseños de transformadores de núcleo E como los de núcleo C encuentran amplias aplicaciones en sistemas de distribución de energía. Los núcleos electrónicos se emplean comúnmente en transformadores de alta potencia donde la eficiencia y el tamaño compacto son consideraciones esenciales. Los núcleos C, por otro lado, son adecuados para transformadores más pequeños utilizados en aplicaciones residenciales o comerciales.Transformadores de audio:Los núcleos electrónicos se utilizan a menudo en transformadores de audio donde la calidad y la fidelidad son fundamentales. Estos transformadores garantizan una transmisión de señal eficaz y minimizan la distorsión. Las propiedades magnéticas superiores de los núcleos de acero al silicio contribuyen a mejorar el rendimiento del audio, ofreciendo una reproducción de sonido limpia y precisa.Sistemas de energías renovables:Los transformadores utilizados en sistemas de energía renovable, como la energía solar y eólica, requieren una conversión de energía eficiente. Se pueden emplear tanto núcleos E como núcleos C dependiendo de los requisitos específicos del sistema. Estos núcleos permiten una transmisión de energía efectiva, reduciendo las pérdidas de energía y maximizando la utilización de recursos renovables.Los núcleos de transformadores, fabricados de acero al silicio, son componentes vitales que optimizan la eficiencia y el rendimiento de los transformadores. Ya sea en distribución de energía, aplicaciones de audio o sistemas de energía renovable, la elección de núcleos E o núcleos C depende de las consideraciones de diseño específicas. Al aprovechar la alta permeabilidad magnética y las bajas pérdidas de los núcleos de acero al silicio, los transformadores pueden ofrecer una funcionalidad óptima en diversos escenarios operativos.
    LEE MAS
  • ¿Cuál es la diferencia entre agregar o no agregar un núcleo de hierro al transformador? ¿Cuál es la diferencia entre agregar o no agregar un núcleo de hierro al transformador?
    Mar 14, 2024
    Un transformador es un dispositivo que convierte voltaje, corriente e impedancia de CA. Cuando la corriente CA fluye a través de la bobina primaria, se genera un flujo magnético de CA en el núcleo de hierro (o núcleo magnético), lo que provoca que se induzca voltaje (o corriente) en la bobina secundaria. Un transformador consta de un núcleo de hierro (o núcleo magnético) y una bobina. El núcleo del transformador es el circuito magnético principal del flujo magnético acoplado en el transformador.Principio de funcionamiento del núcleo del transformador.La función del núcleo del transformador es formar un circuito magnético de flujo de acoplamiento con muy pequeña reluctancia. Debido a que la reluctancia es muy pequeña, la eficiencia de trabajo del transformador mejora considerablemente.En términos generales, los transformadores se dividen según el material de acoplamiento entre las bobinas, incluidos los transformadores de núcleo de aire, los transformadores de núcleo magnético y los transformadores de núcleo de hierro. Los transformadores de núcleo de aire y los transformadores de núcleo magnético se utilizan principalmente en circuitos electrónicos de alta frecuencia.Porque acero al silicio En sí mismo es un material con una fuerte permeabilidad magnética, puede producir una mayor intensidad de inducción magnética en la bobina energizada, lo que puede reducir el tamaño del transformador y mejorar la eficiencia de trabajo del transformador. La característica del acero al silicio es que tiene la intensidad de inducción magnética de saturación más alta (por encima de 2,0 T) entre los materiales magnéticos blandos de uso común. Por lo tanto, cuando se utiliza como núcleo de transformador, puede funcionar en un punto de funcionamiento muy alto (como un valor de inducción magnética operativa de 1,5 T). Sin embargo, el acero al silicio también tiene la mayor pérdida de hierro entre los materiales magnéticos blandos comúnmente utilizados. Para evitar que el núcleo de hierro se caliente debido a pérdidas excesivas, su frecuencia de uso no es alta y generalmente solo puede funcionar por debajo de 20 KHz. Por lo tanto, la frecuencia de los circuitos de potencia es mayoritariamente de alrededor de 50 Hz.Nuestro núcleo de transformador de nueva construcciónShunge Company no solo proporciona materias primas de láminas de acero al silicio de primera mano, sino que también puede personalizar los núcleos de transformadores terminados para los clientes. Si tiene alguna necesidad, por favor Contáctenos.
    LEE MAS
  • ¿Qué impacto tiene el punzonado de laminaciones de acero en el rendimiento del motor? ¿Qué impacto tiene el punzonado de laminaciones de acero en el rendimiento del motor?
    Dec 09, 2023
    El laminación del motorEl tamaño del punzón viene dado por el diseño. A continuación se analizan los factores que afectan la calidad en la fabricación cuando el diseño permanece sin cambios.1. Pérdida y permeabilidad magnética de láminas de acero al silicioLas propiedades de pérdida específicas de las láminas de acero al silicio de diferentes fabricantes y diferentes números de lote del mismo fabricante no son exactamente las mismas. Aunque existen valores estándar prescritos, fluctúan dentro de un cierto rango.Si la amplitud de la fluctuación es relativamente grande, o el material de la lámina de acero al silicio en sí no cumple con los requisitos, entonces el uso de dichas láminas de acero al silicio en el motor afectará en gran medida el rendimiento del motor, especialmente para medios y motores grandes, donde la pérdida de hierro representa el 10% de la pérdida.Cuanto mayor sea la proporción, más evidente será el impacto en el rendimiento (principalmente aumento de temperatura y factor de potencia). Se trata de un peligro oculto que es difícil de detectar a partir del diseño electromagnético.2. El molde de lámina de acero al silicio está fuera de toleranciaLos moldes de láminas de acero al silicio, como los troqueles de punzonado y los moldes de liberación, tienen un espacio entre el punzón y el troquel que aumenta gradualmente durante el uso.Algunos fabricantes todavía se ocupan de la producción cuando el molde está fuera de tolerancia y las consecuencias son: las rebabas de punzonado aumentan considerablemente.Si la rebaba es grande, la pérdida de hierro y la corriente sin carga aumentarán, lo que provocará que aumente la temperatura del motor, disminuya el factor de potencia y disminuya la eficiencia.3. Aislamiento entre láminas de acero al silicio.El aislamiento entre láminas de acero al silicio puede suprimir las corrientes parásitas en el núcleo de hierro, reduciendo así la pérdida resultante por corrientes parásitas (se incluye en las pérdidas del hierro). La capa aislante entre chips se forma de las tres formas siguientes:(1) Aislamiento entre chips compuesto por la película de pintura de láminas de acero al silicio laminadas en frío;(2) El fabricante del motor aplica pintura aislante sobre las chapas perforadas sin película de pintura;(3) El fabricante del motor oxida las láminas perforadas para formar una capa aislante.
    LEE MAS
1 2
Un total de2paginas

Need Help? leave a message

dejar un mensaje

We will contact you as soon as possible

enviar

Hogar

productos

whatsApp

contacto

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on