Banner de la página interior
Búsqueda
Hogar

Búsqueda

  • Tres avances tecnológicos en el auge de la industria del acero al silicio en China
    Mar 17, 2025
    Como un tipo importante de acero eléctricoEl acero al silicio desempeña un papel fundamental en la industria energética. En los últimos años, China... acero al silicio La industria ha logrado un progreso notable y se ha consolidado como líder en el mercado global. Este artículo presenta tres avances tecnológicos en el auge de la industria del acero al silicio en China, mostrando las destacadas contribuciones de los fabricantes y productores chinos de acero eléctrico a la innovación tecnológica.Primer avance tecnológico: desarrollo y producción de Acero al silicio de alta inducción magnéticaLos fabricantes chinos de acero eléctrico participan activamente en la investigación, el desarrollo y la producción de acero al silicio de alta inducción magnética para satisfacer la creciente demanda. Este acero presenta una mayor resistencia a la inducción magnética y menores pérdidas de hierro, lo que reduce eficazmente las pérdidas de energía en los equipos eléctricos. Mediante la adopción de técnicas de producción avanzadas y un diseño de aleación preciso, Fabricantes chinos de acero eléctrico Han logrado resultados innovadores, elevando las propiedades magnéticas del acero al silicio a nuevas alturas.Segundo avance tecnológico: promoción y aplicación del acero al silicio amorfoEl acero al silicio amorfo, un novedoso material de acero al silicio, presenta pérdidas por histéresis y pérdidas de hierro extremadamente bajas, lo que ofrece una mayor eficiencia operativa y un menor consumo de energía. Los fabricantes chinos de acero eléctrico promueven su aplicación mediante la introducción de líneas de producción y procesos de fabricación avanzados, mejorando eficazmente la calidad y el rendimiento del acero al silicio. El acero al silicio amorfo se ha empleado ampliamente en equipos eléctricos como... transformadores, haciendo contribuciones significativas al funcionamiento eficiente de la industria energética de China.Tercer avance tecnológico: procesos de fabricación innovadores para Acero al silicio de calibre finoEl acero al silicio de calibre fino tiene un inmenso potencial para aplicaciones en la industria energética, pero su proceso de fabricación es relativamente complejo e impone altos requisitos en cuanto a tecnología y equipos de producción. Los fabricantes chinos de acero al silicio han desarrollado con éxito tecnologías de fabricación eficientes para este material mediante la innovación continua y la mejora de procesos. Estas innovaciones tecnológicas no solo mejoran la eficiencia y la calidad de la producción del acero al silicio de calibre fino, sino que también reducen los costos de producción, ofreciendo a los usuarios opciones de productos más competitivas.Gracias al continuo desarrollo e innovación de la industria china del acero al silicio, los fabricantes y productores de acero eléctrico han logrado importantes avances tecnológicos. La promoción y aplicación del acero al silicio de alta inducción magnética, el acero al silicio amorfo y el acero al silicio de calibre fino han impulsado considerablemente el desarrollo de la industria eléctrica y la mejora de la eficiencia energética. La industria china del acero al silicio seguirá impulsando la innovación y el desarrollo tecnológico, contribuyendo aún más a la prosperidad del mercado mundial del acero eléctrico.
    LEE MAS
  • Acero al silicio CRGO para una transmisión de energía eficiente Acero al silicio CRGO para una transmisión de energía eficiente
    Dec 18, 2024
    El núcleo del transformador juega un papel crucial en la transmisión eficiente y confiable de energía eléctrica. Como componente clave, proporciona una ruta de baja reluctancia para que el flujo magnético generado por el devanado primario se transfiera al devanado secundario. Entre los diversos materiales utilizados para los núcleos de los transformadores, acero al silicio orientado, también conocido como acero al silicio CRGO (Cold-Rolled Grain-Oriented) o acero eléctrico, destaca por sus excepcionales propiedades magnéticas y su amplia aplicación en diferentes potencias de transformadores.Acero al silicio CRGO: un material de núcleo superior:Acero al silicio CRGO está diseñado específicamente para exhibir la orientación del grano, lo que le permite maximizar sus propiedades magnéticas cuando se somete a un campo magnético alterno. El proceso de fabricación implica una técnica controlada de laminación en frío que alinea los granos de cristal dentro del acero en una dirección específica. Esta orientación del grano reduce la aparición de dominios magnéticos y minimiza las pérdidas por histéresis y las pérdidas por corrientes parásitas, lo que convierte al acero al silicio CRGO en la opción preferida para núcleos del transformador.Aplicaciones en diferentes potencias nominales:Transformadores de baja potencia:En transformadores de baja potencia, como los que se utilizan en aplicaciones residenciales y comerciales de pequeña escala, se utiliza acero al silicio CRGO para mejorar la eficiencia energética. Las bajas pérdidas en el núcleo del material y su alta permeabilidad magnética contribuyen a reducir el desperdicio de energía y mejorar la regulación del voltaje, lo que garantiza un rendimiento óptimo en electrodomésticos, sistemas de iluminación y dispositivos electrónicos.Transformadores de Media Potencia:Los transformadores de potencia media, comúnmente empleados en entornos industriales y redes de distribución de energía, requieren materiales centrales confiables y eficientes. El acero al silicio CRGO ofrece excelentes propiedades magnéticas a potencias nominales intermedias, lo que permite una mejor transmisión de energía y pérdidas de energía mínimas. Estos transformadores encuentran aplicación en áreas como instalaciones de fabricación, edificios comerciales y subestaciones de servicios públicos.Transformadores de alta potencia:Para transformadores de alta potencia, como los utilizados en sistemas de transmisión y generación de energía a gran escala, el acero al silicio CRGO proporciona un rendimiento superior. Con su avanzada orientación de grano y características magnéticas optimizadas, minimiza las pérdidas en el núcleo y mejora la eficiencia, asegurando una transmisión de energía confiable a largas distancias. Estos transformadores de alta potencia son componentes cruciales de las redes eléctricas y permiten la distribución eficiente de electricidad a ciudades, industrias y proyectos de infraestructura.  La selección del material del núcleo juega un papel vital en el rendimiento y la eficiencia de los transformadores. El acero al silicio CRGO, también conocido como acero al silicio orientado o acero eléctrico, se destaca como una opción ideal para núcleos de transformadores de diferentes potencias nominales. Su orientación de grano única y sus propiedades magnéticas reducen significativamente las pérdidas de energía, asegurando una transmisión de potencia óptima. Ya sea en transformadores de baja, media o alta potencia, el acero al silicio CRGO demuestra su superioridad para mejorar la eficiencia y confiabilidad en la transmisión y distribución de energía eléctrica.
    LEE MAS
  • La importancia de la laminación en los núcleos de los transformadores La importancia de la laminación en los núcleos de los transformadores
    Oct 12, 2024
    Los transformadores son dispositivos eléctricos esenciales que facilitan la transmisión y distribución eficiente de la energía eléctrica. En el corazón de cada transformador se encuentra su núcleo, que desempeña un papel crucial en la transformación de los niveles de voltaje. Una técnica comúnmente empleada en la construcción núcleos de transformador es la laminación. En este artículo, exploraremos por qué se utiliza la laminación y profundizaremos en su importancia en el diseño y rendimiento de los núcleos de transformadores. ¿Por qué laminación COGO? La razón principal para incorporar CRGO laminaciones en núcleos de transformadores es mitigar las pérdidas de energía causadas por las características magnéticas manteniendo un rendimiento óptimo. Los núcleos laminados constan de numerosas capas delgadas de un material magnético, típicamente acero al silicio, apilados juntos y aislados entre sí. Esta técnica introduce varios beneficios que mejorar la eficiencia y confiabilidad de transformadores.   Reducción de las pérdidas por corrientes de Foucault: Cuando una corriente alterna fluye a través del devanado primario de un transformador, induce un campo magnético en el núcleo. Sin embargo, este campo magnético variable puede inducir pequeñas corrientes circulantes, conocidas como corrientes parásitas, dentro del material del núcleo sólido. Estas corrientes parásitas generan calor y consumen una cantidad significativa de energía, lo que provoca pérdidas de energía indeseables. La laminación aborda eficazmente este problema al dividir el núcleo sólido en finas capas aisladas, interrumpiendo así el flujo de corrientes parásitas y minimizando como resultado la disipación de energía.   Control del flujo magnético: La laminación también ayuda a controlar el flujo de flujo magnético dentro del núcleo del transformador. Al dividir el núcleo en múltiples capas, cada una con su propia ruta magnética, las laminaciones aseguran que el flujo magnético siga una ruta deseada y eficiente. Esta ruta de flujo controlada minimiza las fugas magnéticas y maximiza el acoplamiento entre los devanados primario y secundario, lo que mejora el rendimiento del transformador. Reducción de las pérdidas por histéresis: La pérdida de histéresis ocurre cuando el campo magnético dentro del material del núcleo invierte repetidamente su polaridad con cada ciclo alterno. Mediante el uso de laminaciones se puede reducir significativamente el tamaño del bucle de histéresis y, por tanto, las pérdidas de histéresis asociadas. Esto se logra seleccionando cuidadosamente el espesor y la composición de las laminaciones, optimizando las propiedades magnéticas y reduciendo las pérdidas de energía dentro del núcleo. ENTONCES… Laminación Es una técnica fundamental empleada en el diseño del núcleo de un transformador para mejorar la eficiencia y reducir las pérdidas de energía. Al controlar eficazmente las corrientes parásitas, el flujo magnético y las pérdidas por histéresis, los núcleos de transformadores laminados garantizan un rendimiento óptimo y mejoran la eficiencia energética general de los sistemas de distribución de energía eléctrica. A medida que las tecnologías sigan avanzando, el uso de materiales y diseños laminados avanzados contribuirá aún más a la evolución de transformadores eficientes y sostenibles.
    LEE MAS
  • ¿Cuál es la diferencia entre agregar o no agregar un núcleo de hierro al transformador? ¿Cuál es la diferencia entre agregar o no agregar un núcleo de hierro al transformador?
    Mar 14, 2024
    Un transformador es un dispositivo que convierte voltaje, corriente e impedancia de CA. Cuando la corriente CA fluye a través de la bobina primaria, se genera un flujo magnético de CA en el núcleo de hierro (o núcleo magnético), lo que provoca que se induzca voltaje (o corriente) en la bobina secundaria. Un transformador consta de un núcleo de hierro (o núcleo magnético) y una bobina. El núcleo del transformador es el circuito magnético principal del flujo magnético acoplado en el transformador.Principio de funcionamiento del núcleo del transformador.La función del núcleo del transformador es formar un circuito magnético de flujo de acoplamiento con muy pequeña reluctancia. Debido a que la reluctancia es muy pequeña, la eficiencia de trabajo del transformador mejora considerablemente.En términos generales, los transformadores se dividen según el material de acoplamiento entre las bobinas, incluidos los transformadores de núcleo de aire, los transformadores de núcleo magnético y los transformadores de núcleo de hierro. Los transformadores de núcleo de aire y los transformadores de núcleo magnético se utilizan principalmente en circuitos electrónicos de alta frecuencia.Porque acero al silicio En sí mismo es un material con una fuerte permeabilidad magnética, puede producir una mayor intensidad de inducción magnética en la bobina energizada, lo que puede reducir el tamaño del transformador y mejorar la eficiencia de trabajo del transformador. La característica del acero al silicio es que tiene la intensidad de inducción magnética de saturación más alta (por encima de 2,0 T) entre los materiales magnéticos blandos de uso común. Por lo tanto, cuando se utiliza como núcleo de transformador, puede funcionar en un punto de funcionamiento muy alto (como un valor de inducción magnética operativa de 1,5 T). Sin embargo, el acero al silicio también tiene la mayor pérdida de hierro entre los materiales magnéticos blandos comúnmente utilizados. Para evitar que el núcleo de hierro se caliente debido a pérdidas excesivas, su frecuencia de uso no es alta y generalmente solo puede funcionar por debajo de 20 KHz. Por lo tanto, la frecuencia de los circuitos de potencia es mayoritariamente de alrededor de 50 Hz.Nuestro núcleo de transformador de nueva construcciónShunge Company no solo proporciona materias primas de láminas de acero al silicio de primera mano, sino que también puede personalizar los núcleos de transformadores terminados para los clientes. Si tiene alguna necesidad, por favor Contáctenos.
    LEE MAS
  • ¿Cómo logra un transformador la transformación de voltaje? ¿Cómo logra un transformador la transformación de voltaje?
    Jan 15, 2024
    Transformadores lograr la transformación de voltaje a través de la inducción electromagnética. Cuando una corriente alterna (CA) fluye a través del devanado primario del transformador, genera un campo magnético cambiante. Este campo magnético cambiante induce un voltaje en el devanado secundario basado en la relación de vueltas entre los devanados primario y secundario. Como resultado, el voltaje aumenta o disminuye sin alterar la frecuencia, lo que permite una transmisión eficiente de energía eléctrica a través de diferentes niveles de voltaje.Un transformador funciona según el principio de inducción electromagnética. Consta de dos devanados aislados enrollados alrededor de un núcleo de hierro cerrado. Estos devanados, conocidos como devanado primario o primer devanado, y devanado secundario o segundo devanado, tienen diferente número de vueltas y sólo están acoplados magnéticamente sin conexión eléctrica.Cuando el devanado primario está conectado a una fuente de alimentación de CA, una corriente alterna fluye a través de él, creando un flujo magnético alterno en el núcleo de hierro. Este flujo induce voltajes, denominados e1 y e2, respectivamente, en los devanados primario y secundario a la misma frecuencia.Cuando se conecta una carga al devanado secundario, el voltaje e2 hace que la corriente fluya a través de la carga, permitiendo la transferencia de energía eléctrica. Esto logra la transformación de voltaje. Según la ecuación, la magnitud del voltaje inducido en los devanados primario y secundario es proporcional a sus respectivos números de vueltas. Dado que el voltaje inducido es aproximadamente igual al voltaje real de los devanados, al tener diferentes números de vueltas en los devanados primario y secundario, se puede lograr la conversión de voltaje en un transformador.
    LEE MAS
  • ¿Qué es un núcleo en el transformador? ¿Qué es un núcleo en el transformador?
    Jan 22, 2024
     El núcleo del transformador es la parte del circuito magnético del transformador. Generalmente está hecho de laminado en caliente o en frío. láminas de acero al silicio con un alto contenido en silicio y recubierto con pintura aislante en la superficie. El núcleo de hierro y las bobinas enrolladas a su alrededor forman un sistema de inducción electromagnética completo. La cantidad de potencia transmitida por el transformador de potencia depende del material y del área de la sección transversal del núcleo. El núcleo de hierro es uno de los componentes más básicos del transformador. Es la parte del circuito magnético del transformador. Los devanados primario y secundario del transformador están sobre el núcleo de hierro. Para mejorar la permeabilidad del circuito magnético y reducir la pérdida de corrientes parásitas en el núcleo de hierro, el núcleo de hierro generalmente está hecho de una lámina de acero al silicio con superficie aislada de 0,35 mm. El núcleo de hierro se divide en dos partes: un poste de núcleo de hierro y un yugo de hierro. El poste del núcleo de hierro está cubierto con devanados y el yugo de hierro conecta el núcleo de hierro para formar un circuito magnético cerrado.Para evitar que los componentes metálicos como el núcleo del transformador, abrazaderas y anillos de presión debidos al potencial flotante inductivo son demasiado altos y provocan descargas durante el funcionamiento, estos componentes deben conectarse a tierra en un solo punto. Para facilitar las pruebas y la búsqueda de fallas, los transformadores grandes generalmente tienen el núcleo y las abrazaderas conectados a tierra a través de dos casquillos respectivamente.
    LEE MAS
  • ¿Qué se debe hacer antes de exportar acero al silicio al extranjero? ¿Qué se debe hacer antes de exportar acero al silicio al extranjero?
    Sep 19, 2023
    Recientemente, hemos estado exportando diez contenedores de acero electrico a los fabricantes de transformadores y motores en Vietnam.Inspección del proceso de carga de contenedores es la puerta de la etapa final antes de la exportación. Hoy les mostraré lo que hacemos antes de exportar. acero al silicio.Acero al silicio también se conoce como acero eléctrico, acero laminado, o acero para transformadores, y se usa ampliamente en grandes motores, relés, solenoides, motores de electrodomésticos, turbinas eólicas, núcleos de transformadores, vehículos eléctricos, etc. Hay varios pasos necesarios antes de exportar.1. Etiquetado.Todas las etiquetas son personalizado según la demanda del cliente. No se permite mostrar etiquetas chinas cuando se trata de exportación.2. Inspección de contenedores antes de la carga.La inspección del interior del contenedor es esencial, los pequeños agujeros por los que podría pasar la luz deben tener especial cuidado. Los parches, roturas y agujeros pueden causar daños potenciales al contenedor después de la entrega. 3. Consolidación.Se utilizan fuertes paletas de madera y cables metálicos para sujetar y consolidar la bobina. Nosotros elegimos Madera cuadrada duradera de 10x10cm. como palet para sujetar la bobina así como para sujetar y consolidar aún más las 4 esquinas del contenedor. Se contrata un equipo de carga profesional para garantizar la carga. Está estrictamente de acuerdo con los requisitos de la compañía naviera. Una vez hecho todo esto, los contenedores se dirigirán al puerto. ¡Esperando el envío! Pero ese no es el final del pedido, seguiremos de cerca el barco y actualizaremos la información más reciente con nuestros clientes hasta que el contenedor se entregue de manera segura.
    LEE MAS

Need Help? leave a message

dejar un mensaje

We will contact you as soon as possible

enviar

Hogar

productos

whatsApp

contacto

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on