Banner de la página interior
Búsqueda
Hogar

Búsqueda

  • ¿Por qué se utiliza laminación en el núcleo de un transformador? ¿Por qué se utiliza laminación en el núcleo de un transformador?
    Oct 17, 2024
    Los transformadores son dispositivos eléctricos que transfieren energía eléctrica entre dos o más circuitos mediante inducción electromagnética. Los transformadores constan de dos componentes principales: un devanado primario y un devanado secundario, ambos enrollados alrededor de un núcleo. El núcleo del transformador de un transformador juega un papel crucial en su funcionamiento eficiente. Por lo general, se fabrica utilizando laminaciones o capas apiladas de un material magnético, como acero al silicio. Pero ¿por qué se utiliza laminación en el núcleo de un transformador? Profundicemos en esta cuestión. La razón principal para usar laminaciones en el núcleo del transformador es minimizar las pérdidas de energía. Cuando una corriente alterna (CA) fluye a través de un transformador, el campo magnético generado por la corriente hace que el núcleo experimente rápidos ciclos de magnetización y desmagnetización. Estos ciclos conducen a dos tipos de pérdidas de energía en el núcleo del transformador: pérdida por histéresis y pérdida por corrientes parásitas. La pérdida de histéresis se produce debido al cambio repetido de los dominios magnéticos dentro del material del núcleo, lo que resulta en la disipación de energía en forma de calor. Laminar el núcleo ayuda a reducir esta pérdida segmentando el núcleo en capas delgadas. Estas capas interrumpen el camino continuo del flujo magnético, reduciendo el área encerrada por el bucle de histéresis y minimizando así la pérdida por histéresis. La pérdida por corrientes parásitas, por otro lado, es causada por las corrientes circulantes inducidas dentro del material del núcleo debido al campo magnético variable. Al utilizar laminaciones, el núcleo del transformador se divide efectivamente en piezas aisladas, lo que reduce los bucles continuos por los que pueden fluir las corrientes parásitas. Esta segmentación disminuye significativamente el área de la sección transversal disponible para las corrientes parásitas y, en consecuencia, reduce las pérdidas por corrientes parásitas. Además, las laminaciones también mejoran la resistencia mecánica y la estabilidad del núcleo del transformador. Al apilar y sujetar firmemente las laminaciones, el núcleo se vuelve más rígido y menos susceptible a tensiones mecánicas y vibraciones. Esto asegura que el núcleo mantenga su integridad y propiedades magnéticas óptimas durante todo el funcionamiento del transformador. En resumen, el uso de laminaciones en el núcleo de un transformador es esencial para minimizar las pérdidas de energía, particularmente las pérdidas por histéresis y corrientes parásitas. Al dividir el núcleo en capas delgadas, las laminaciones reducen el camino del flujo magnético y las corrientes circulantes, lo que mejora la eficiencia y el rendimiento general del transformador. Además, las laminaciones mejoran la estabilidad mecánica del núcleo. Estos factores contribuyen colectivamente al funcionamiento confiable y eficiente de los transformadores en las aplicaciones. <imagen
    LEE MAS
  • ¿Cómo logra un transformador la transformación de voltaje? ¿Cómo logra un transformador la transformación de voltaje?
    Jan 15, 2024
    Transformadores lograr la transformación de voltaje a través de la inducción electromagnética. Cuando una corriente alterna (CA) fluye a través del devanado primario del transformador, genera un campo magnético cambiante. Este campo magnético cambiante induce un voltaje en el devanado secundario basado en la relación de vueltas entre los devanados primario y secundario. Como resultado, el voltaje aumenta o disminuye sin alterar la frecuencia, lo que permite una transmisión eficiente de energía eléctrica a través de diferentes niveles de voltaje.Un transformador funciona según el principio de inducción electromagnética. Consta de dos devanados aislados enrollados alrededor de un núcleo de hierro cerrado. Estos devanados, conocidos como devanado primario o primer devanado, y devanado secundario o segundo devanado, tienen diferente número de vueltas y sólo están acoplados magnéticamente sin conexión eléctrica.Cuando el devanado primario está conectado a una fuente de alimentación de CA, una corriente alterna fluye a través de él, creando un flujo magnético alterno en el núcleo de hierro. Este flujo induce voltajes, denominados e1 y e2, respectivamente, en los devanados primario y secundario a la misma frecuencia.Cuando se conecta una carga al devanado secundario, el voltaje e2 hace que la corriente fluya a través de la carga, permitiendo la transferencia de energía eléctrica. Esto logra la transformación de voltaje. Según la ecuación, la magnitud del voltaje inducido en los devanados primario y secundario es proporcional a sus respectivos números de vueltas. Dado que el voltaje inducido es aproximadamente igual al voltaje real de los devanados, al tener diferentes números de vueltas en los devanados primario y secundario, se puede lograr la conversión de voltaje en un transformador.
    LEE MAS
  • ¿Qué es un núcleo en el transformador? ¿Qué es un núcleo en el transformador?
    Jan 22, 2024
     El núcleo del transformador es la parte del circuito magnético del transformador. Generalmente está hecho de laminado en caliente o en frío. láminas de acero al silicio con un alto contenido en silicio y recubierto con pintura aislante en la superficie. El núcleo de hierro y las bobinas enrolladas a su alrededor forman un sistema de inducción electromagnética completo. La cantidad de potencia transmitida por el transformador de potencia depende del material y del área de la sección transversal del núcleo. El núcleo de hierro es uno de los componentes más básicos del transformador. Es la parte del circuito magnético del transformador. Los devanados primario y secundario del transformador están sobre el núcleo de hierro. Para mejorar la permeabilidad del circuito magnético y reducir la pérdida de corrientes parásitas en el núcleo de hierro, el núcleo de hierro generalmente está hecho de una lámina de acero al silicio con superficie aislada de 0,35 mm. El núcleo de hierro se divide en dos partes: un poste de núcleo de hierro y un yugo de hierro. El poste del núcleo de hierro está cubierto con devanados y el yugo de hierro conecta el núcleo de hierro para formar un circuito magnético cerrado.Para evitar que los componentes metálicos como el núcleo del transformador, abrazaderas y anillos de presión debidos al potencial flotante inductivo son demasiado altos y provocan descargas durante el funcionamiento, estos componentes deben conectarse a tierra en un solo punto. Para facilitar las pruebas y la búsqueda de fallas, los transformadores grandes generalmente tienen el núcleo y las abrazaderas conectados a tierra a través de dos casquillos respectivamente.
    LEE MAS

Need Help? leave a message

dejar un mensaje

We will contact you as soon as possible

enviar

Hogar

productos

whatsApp

contacto

Need Help? Chat with us

Start a Conversation

Hi! Click one of our members below to chat on